Evolving Bin Packing Heuristics with Genetic Programming
نویسندگان
چکیده
The bin-packing problem is a well known NP-Hard optimisation problem, and, over the years, many heuristics have been developed to generate good quality solutions. This paper outlines a genetic programming system which evolves a heuristic that decides whether to put a piece in a bin when presented with the sum of the pieces already in the bin and the size of the piece that is about to be packed. This heuristic operates in a fixed framework that iterates through the open bins, applying the heuristic to each one, before deciding which bin to use. The best evolved programs emulate the functionality of the human designed ‘first-fit’ heuristic. Thus, the contribution of this paper is to demonstrate that genetic programming can be employed to automatically evolve bin packing heuristics which are the same as high quality heuristics which have been designed by humans.
منابع مشابه
A genetic programming hyper-heuristic approach to automated packing
This thesis presents a programme of research which investigated a genetic programming hyper-heuristic methodology to automate the heuristic design process for one, two and three dimensional packing problems. Traditionally, heuristic search methodologies operate on a space of potential solutions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of heuristics, rat...
متن کاملScalability of Evolved On Line Bin Packing Heuristics
The on line bin packing problem concerns the packing of pieces into the least number of bins possible, as the pieces arrive in a sequential fashion. In previous work we used genetic programming to evolve heuristics for this problem, which beat the human designed best fit algorithm. Here we examine the performance of the evolved heuristics on larger instances of the problem, which contain many m...
متن کاملThe Scalability of Evolved On Line Bin Packing Heuristics
The on line bin packing problem concerns the packing of pieces into the least number of bins possible, as the pieces arrive in a sequential fashion. In previous work, we used genetic programming to evolve heuristics for this problem, which beat the human designed ‘best fit’ algorithm. Here we examine the performance of the evolved heuristics on larger instances of the problem, which contain man...
متن کاملExtending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items
In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...
متن کاملHybrid Genetic Algorithms for Bin-packing and Related Problems
The genetic algorithm (GA) paradigm has attracted considerable attention as a promising heuristic approach for solving optimization problems. Much of the development has related to problems of optimizing functions of continuous variables, but recently there have been several applications to problems of a combinatorial nature. What is often found is that GAs have fairly poor performance for comb...
متن کامل